二次函数综合题分类及答案(通用二十三篇)
时间:2025-11-03 作者:青果网二次函数综合题分类及答案 篇1
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
二次函数综合题分类及答案 篇2
本学期我担任高三两个班的数学教学工作,经过一个学期的努力,两个班在前几次月考中都取得了比较好的成绩。高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:
1、备课:研读考纲,梳理知识。根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,老教师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。
2、上课:重视课本,狠抓基础,构建学生的良好知识结构和认知结构。上好课的前提是做好课前准备。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的.实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。课间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。
3、辅导:精心选题,针对性讲评。
利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。
4、作业:狠抓常规,强化落实与检查。
认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。由于高三的课业负担较重,1我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。
5、个人学习:充分发挥集体备课的优势,积极学习其他教师的各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。坚持每周集体备课,认真听课,探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:
(1)每周每位教师轮流出一套滚动试题;
(2)每周至少小测一次;
(3)每月或每单元大测一次;
(4)每次月考组织高三综合测评一次;
(5)总结,反思。
以上是我这学期的工作总结,还有很多需要完善和改进的地方,我将继续努力,虚心求教,争取下学期取得更圆满的成绩。
二次函数综合题分类及答案 篇3
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
不等式的判定:
①常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
二次函数综合题分类及答案 篇4
1.函数的.奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
二次函数综合题分类及答案 篇5
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
二次函数综合题分类及答案 篇6
●不等式
1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、两类恒成立问题图象法——恒成立,则=?
★★★★分离变量法——在[1,3]恒成立,则=?(必考题)
4、线性规划问题
(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界
(2)目标函数改写:(注意分析截距与z的关系)
(3)平行直线系去画
5、基本不等式的形式和变形形式
如a,b为正数,a,b满足,则ab的范围是
6、运用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘记交代是什么时候取到=!!)
一个非常重要的函数——对勾函数的图象是什么?
运用对勾函数来处理下面问题的最小值是
7、★★两种题型:
和——倒数和(1的代换),如x,y为正数,且,求的最小值?
和——积(直接用基本不等式),如x,y为正数,,则的范围是?
不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,,则的范围是?
二次函数综合题分类及答案 篇7
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集含有有限个元素的集合
(2) 无限集含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x=-5}
二、集合间的基本关系 1.“包含”关系—子集
注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
B或BA 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x-1=0} B={-1,1}“元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
nn-1有n个元素的集合,含有2个子集,2个真子集
例题:
下列四组对象,能构成集合的是 A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有个
3.若集合M={y|y=x-2x+1,xR},N={x|x≥0},则M与N的关系是 .
4.设集合A=xx2,B=a,若AB,则a的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.
7.已知集合A={x| x+2x-8=0}, B={x| x-5x+6=0}, C={x| x-mx+m-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二次函数综合题分类及答案 篇8
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的轨迹方程的基本步骤。
1、建立适当的坐标系,设出动点M的坐标;
2、写出点M的集合;
3、列出方程=0;
4、化简方程为最简形式;
5、检验。
二、求动点的轨迹方程的常用方法:
求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
二次函数综合题分类及答案 篇9
高一数学学习阶段,做好每一个知识点的总结有助于我们在考试中的发挥。
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.
当时,; 当时,; 当时,不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.
⑤一般式:(A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中.
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组的一组解.
方程组无解 ; 方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点; 当时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的`位置.
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含; 当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台:
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V= ; S=
4、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.
应用: 判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
符号语言:
公理2的作用:
①它是判定两个平面相交的方法.
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
③它可以判断点在直线上,即证若干个点共线的重要依据.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
公理3及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交.
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上. B、证明作出的角即为所求角 C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.
(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:aα a∩α=A a‖α
(9)平面与平面之间的位置关系:平行——没有公共点;α‖β
相交——有一条公共直线.α∩β=b
5、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行.线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为.
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为. ②平面的垂线与平面所成的角:规定为.
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
二次函数综合题分类及答案 篇10
你们不要老提我,我算什么超人,是大家同心协力的结果。我身边有300员虎将,其中100人是外国人,200人是年富力强的香港人。—x年度上学期期末高三数学备课组工作总结在全体高三数学组老师的共同努力下我们圆满完成本学期的教育、教学也取得了一些成绩例如
统考成绩和区前一名在大幅度缩小理科数学名次提前了一名等现总结如下:
一、制定切实可行的计划并且一定要按照计划严格执行计划的安排进行复习
俗话说;凡事不预而不立。我说的切实可行的意思是计划要细致具体严格。一定要遵循计划的安排走。大家知道高三的复习其实不止我们数学这一科其他的学科也在内都是时间紧任务重要在有限的时间完成可以说是无限的复习内容不精心作以安排在复习中势必出现忙乱的现象也会容易出现顾此失彼的后果。在开学伊始我们全组高三数学组老师就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少还要考虑在高考中占有的比重更要顾及哪些内容是我们值得付出时间和精力的等等一系列因素。使得大家在时间上有了紧迫感使得我们的教学内容更加有效率使得我们更能发挥积极性去充分地调动学生。
二、认真研究考试大纲重视基础
注重数学学科的思想渗透强化能力的培养。给学生科学合理适于接受的数学学习建议。一年一度的.《考试大纲》反映了命题的方向作为我本人哪一年担任高三课我都会研读考纲。这样不但可以从宏观上掌握考试内容做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求分清哪些内容只要一般理解哪些内容应重点掌握哪些知识又要求灵活运用和综合运用复习中要结合课本对照《考试大纲》把知识点从整体上再理一遍既有横向串联又有纵向并联在教学中我也大胆的指导和建议老师们力争不要做太多无用功。有些内容就得敢于大胆的取舍因为题永远是讲不完也是做不完的在时间紧张的情况下我们一方面要稳住阵脚;一方面又不要给学生带来急躁的情绪。从今年的《考试大纲》看总体要求保持平稳,并在平稳过渡当中强调了试题设计的创新程度。
大纲要求试题难度更加符合教学的实际与高中学生学习的实际水平特别值得关注的是三角函数、立体几何两个模块的具体要求明显地降低了三角函数知识作为解题的工具没必要学习得那么深、那么难在立体几何的备考方面考生一般有求难的趋向这显然也是不必要的。因此在复习中加强基础知识的巩固和提高加强各知识板块间的联系和综合加强通性通法的总结和运用重视教材:
狠抓基础是根本;
立足中低档降低重心是策略;
过程中发展能力提高素质是核心
记得在开学初的大教研中,我们数学的所有老师展开了对各年高考试题的研讨大家的一致意见就是狠抓基础立足中档题,在复习过程中我们经常提醒学生多回顾课本、成立学习笔记和纠错本浓缩所学知识熟练掌握解题方法加快解题速度缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点比如开始复习的内容是高考中的重中之重学生已经扔了两年的时间,而且是最抽象的刚上高中时掌握的就很最薄弱。这样我们就充分调动学生立足课本浏览以前的课堂笔记激活所有数学知识点。既给了学生自主学习的空间也为学生树立了备战高考的信心。以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清紧紧跟的原则。
所谓段段清就是复习完一个章节即时考查力求不留知识死角使得基础复习更完备知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,及时的巩固缩短了遗忘周期。在集体教研选择教学题目时尤其注重:
(1)强调知识的综合性及不同章节的内在联系;
(2)不断渗透重要的数学思想与方法
如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;
(3)强化数学思维训练体现多一点,想少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功。
(4)反思解答问题时的开窍点优化解题时思维线路熟练解答问题的通性通法强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力。在二轮复习过程中我们基本采用了以学生为主体的练讲结合把所有的题目都让学生独立的完成然后有老师点评点播。达到精讲精练的目的也使学生不在题海中泛滥而是在规律和方法中寻求触类旁通举一反三游刃有余的学习境界。
三、精诚合作互相学习和谐共建奋战高考。
由于工作的安排我本人担任理科班的教学进度往往和文科不能保持一致这样在复习材料的准备上就要靠大家。在这里我们组里从来没有因为我不能及时准备材料而计较过有了什么想法有了什么建议教研时出现了什么点子,事后大家都能主动积极的查找材料。
四、一些比较好的做法:
1、每周小测至少一次;
2、每月或每单元须大测;
3、每周假期作业发滚动试题一份;
4、强调先练后讲及时订正
紧张而繁重的高三复习备考还没有画上了句号我们还须在奋战的大潮中一起披风展浪一起持舵前行,尽管我们不能成为最领先的弄潮儿但因为我们在尽心我们更在尽力,我们可以自豪的说;我们无悔。
全体高三数学组老师
二次函数综合题分类及答案 篇11
高三数学总复习既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。以下是的高三数学复习计划。
一、指导思想:
高三复习应根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。要面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。
二、复习进度:
按教研室下发的计划为准,结合本校实际,一轮在2月底3月初完成。材料以教研室下发材料为主,进行集体备课,难题删去。
每章进行一次单元过关考试和一次满分答卷,统考前进行一次模拟考试练习。
三、复习措施:
1、 抓住课堂,提高复习效益。
首先要加强集体研究,认真备课。集体备课要做到:“一结合两发挥”。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。
集体备课的内容:备计划、课时的划分、备教学的起点、重点、难点、交汇点、疑点,备习题、高考题的选用、备学情和学生的阶段性心理表现等。
其次精选习题,注重综合 。复习中要选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。
再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的分析问题和解决问题的能力上
讲评课要紧紧的抓住典型的题目讲评,凡是出错率高的题目必须讲,必须再练习。讲解时要注意从学生出错的根源上剖析透彻 ,彻底根治。要做到:重点讲评、纠错讲评和辩论式讲评相结合,或者让学生讲题,给学生排疑解难,帮助学生获得成功。
2、畅通反馈渠道,了解学生
通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。
3、复习要稳扎稳打,注重反思
数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结 。反思总结解题过程的俄 来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循5;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。
注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。
4、强化数学思想方法的渗透,提高学生的解题能力
在复习中要加强数学思想方法的复习,特别要研究解题中常用的思想方法:函数和方程的思想、数形结合思想、分类讨论思想、转化和化归的思想,还有极限的思想和运动变化的思想,而采用的方法有:换元法、待定系数法、判别式法、割补法等,逻辑分析法有分析法、综合法、数学归纳法和反证法等。对于这些数学思想和方法要在平日的教学中,,结合具体的题目和具体的章节 ,有意识的、恰当的进行渗透学习和领会,要让学生逐个的掌握他们的本质的特征和运用的基本的程序,做到灵活的运用和使用数学思想和方法去解决问题。复习中注重揭示思想方法在知识互相联系、互相沟通中的纽带作用。
二次函数综合题分类及答案 篇12
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.
3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
8.充要条件
二、函数
1.指数式、对数式,
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.
(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数与函数的图像关于直线(轴)对称.
推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.
推广二:函数,的图像关于直线对称.
(2)函数与函数的图像关于直线(轴)对称.
(3)函数与函数的图像关于坐标原点中心对称.
三、数列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系
2.等差数列中
(1)等差数列公差的取值与等差数列的单调性.
(2)也成等差数列.
(3)两等差数列对应项和(差)组成的新数列仍成等差数列.
(4)仍成等差数列.
(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;
(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.
(7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2)两等比数列对应项积(商)组成的新数列仍成等比数列.
(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;
(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.
(5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.
(2)如果数列成等比数列,那么数列必成等差数列.
(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和
(6)通项转换法。
四、三角函数
1.终边与终边相同(的终边在终边所在射线上).
终边与终边共线(的终边在终边所在直线上).
终边与终边关于轴对称
终边与终边关于轴对称
终边与终边关于原点对称
一般地:终边与终边关于角的终边对称.
与的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式:,扇形面积公式:1弧度(1rad).
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.
(2)正弦定理:(R为三角形外接圆的半径).
(3)余弦定理:常选用余弦定理鉴定三角形的类型.
五、向量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).
3.两非零向量平行(共线)的充要条件
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2.
5.三点共线;
6.向量的数量积:
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有:(根据目标不等式左右的运算结构选用)
a、b、c R,(当且仅当时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
6.不等式的恒成立,能成立,恰成立等问题
(1)恒成立问题
若不等式在区间上恒成立,则等价于在区间上
若不等式在区间上恒成立,则等价于在区间上
(2)能成立问题
(3)恰成立问题
若不等式在区间上恰成立,则等价于不等式的解集为.
若不等式在区间上恰成立,则等价于不等式的解集为,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程;标准方程;
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆上一点圆的切线方程
过圆上一点圆的切线方程
过圆上一点圆的切线方程
如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.
如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).
7.曲线与的交点坐标方程组的解;
过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的.正数,抛物线点点距除以点线距商是等于1.
2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中,椭圆中、双曲线中.
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.
5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)
2.多项式函数的导数与函数的单调性
在一个区间上(个别点取等号)在此区间上为增函数.
在一个区间上(个别点取等号)在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数处有且“左正右负”在处取极大值;
函数在处有且左负右正”在处取极小值.
注意:①在处有是函数在处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”
函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。
二次函数综合题分类及答案 篇13
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等
24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理(sss)有三边对应相等的两个三角形全等
26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的.对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即s=(a×b)÷2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h
83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(asa)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)
94判定定理3三边对应成比例,两三角形相似(sss)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线l和⊙o相交d
②直线l和⊙o相切d=r
-
✹青果网qG85.cOM熬夜必刷:
- 二次函数的课件 | 二次函数应用思想总结 | 二次结构方案 | 二次根式课件 | 二次函数综合题分类及答案 | 二次函数综合题分类及答案
③直线l和⊙o相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>r+r②两圆外切d=r+r
③两圆相交r-rr)
④两圆内切d=r-r(r>r)⑤两圆内含dr)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:l=nπr/180
145扇形面积公式:s扇形=nπr2/360=lr/2
146内公切线长=d-(r-r)外公切线长=d-(r+r)
147等腰三角形的两个底脚相等
148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
149如果一个三角形的两个角相等,那么这两个角所对的边也相等
150三条边都相等的三角形叫做等边三角形
二次函数综合题分类及答案 篇14
一:集合的含义与表示
1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示:{……}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}
b、描述法:
①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x—3>2},{x|x—3>2}
②语言描述法:例:{不是直角三角形的三角形}
③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a?A
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N—或N+
整数集Z
有理数集Q
实数集R
6、集合间的基本关系
(1)。“包含”关系(1)—子集
定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
二次函数综合题分类及答案 篇15
反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和—2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K0时α∈(0°,90°)
k0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
二次函数综合题分类及答案 篇16
一、班级情况分析:
这学期,我继续执教四年级5班和6班。大部分学生对数学有上进心,但接受能力还有待提高,学习态度还需不断端正。学生在学习水平上差异较大,有的学生的学习习惯差,上课经常走神,学生的自我约束的能力很差,作业不够规范,马虎、粗心现象特别突出。很多家长的重视程度不够,在教学过程中对学生学习习惯和学习行为的教育力度不是很到位,相对来说差生面广,特别是解决问题的能力很差,这一类学生在本学期还要重点抓。本学期要想有所进步,还有一定的难度,需要付出很大的努力。
二、本册教材内容分析:
这册教材包括下面的`内容:四则运算;位置与方向;运算定律与简便计算;小数的意义和性质;三角形;小数的加法和减法;统计;数学广角和数学综合运用活动等。
在数与计算方面,本教材安排了小数的意义与性质,小数的加法和减法,四则运算,运算定律与简便运算。小数在日常生活中有着广泛的应用,有关小数概念的知识和小数四则运算能力是小学生应该掌握和形成的基础知识和基本能力。在本学期里学生将系统地学习小数的意义和性质、小数大小的比较、小数点位置的移动引起小数大小的变化等,并在此基础上学习比较复杂的小数的加法和减法。使学生很好地理解小数的意义,能用小数来表达和交流信息,初步学习用小数知识解决问题。有关四则运算的顺序和运算定律的知识也是小学生应当掌握的有关计算的基础知识,在本学期里学生将系统地学习混合运算的运算顺序,重点学习含有两级运算的四则混合运算的运算顺序,为学习列出综合算式解决问题打下基础,并学习运用运算定律进行简便运算。
在空间与图形方面,本册教材安排了位置与方向、三角形两个单元,这些都是本册的难点或重点教学内容。在已有知识和经验的基础上,通过丰富的数学活动,让学生进一步认识三角形的特性,进一步了解确定位置的方法。使学生在探索图形的特征、图形的变换以及根据方向和距离确定物体位置的活动中进一步发展空间观念,提高观察能力和动手操作能力,同时获得探究学习的经历。
在统计知识方面,本册教材安排了折线统计图。让学生学习根据统计表中的数据制作单式折线统计图,学会看懂此种统计图并学习根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用,形成统计的观念。
在用数学解决问题方面,教材一方面结合计算内容,教学用所学的整数四则运算知识和小数加减法知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
本册教材根据学生所学习的数学知识和生活经验,安排了两个综合应用数学的实践活动——“营养午餐”和“小管家”,让学生通过小组合作的探究活动或有现实背景的探索活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
本学期教学重难点:
重点:小数的意义与性质,小数的加法和减法,运算定律与简便计算、三角形。
难点:位置与方向,运用知识解决问题。
三、本学期教学目标:
1、理解小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。
2、掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
3、认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边以及三角形的内角和是180deg;。
4、初步掌握确定物体位置的方法,能根据方向和距离确定物体的位置,能描述简单的路线图。
5、认识折线统计图,了解折线统计图的特点,初步学会根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用。
6、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
7、了解解决植树问题的思想方法,培养从生活中发现数学问题的意识,初步培养探索解决问题有效方法的能力,初步形成观察、分析及推理的能力。
8、通过实践活动,体验数学与日常生活的密切联系。
四、教学措施
1、端正教育思想,面向全体学生,全面了解学生的思想,学习健康,对学生全面负责。言传身教,坚持正面教育,启发诱导,注意调动多方面的积极因素,充分发挥榜样的作用。
2、加强基础知识教学。四则混合运算,是在三步计算的基础上扩展到四步,先出现不带括号的和带小括号的四则混合运算,并有一个算式带两个小括号或小括号里含有两级运算的文字题。理解并掌握小数的概念、性质、法则和定律,是学好数学的重要基础,必须十分重视。
3、加强应用题教学。本册教材在应用题教学中,应用题都是由已学过的两步计算应用题增加一个条件或改变问题而成的。有较为复杂的比多或比少再等分或包含的应用题,几倍求和或差的一般应用题,有发展的归一、归总应用题,还有求路程、时间或另一速度的相遇问题。
4、在教学中多关注学生的个体差异,尊重学生的创造精神,对学生在学习过程中遇到的问题。要适时,有效的帮助和引导。
5、坚持不懈地抓好学生良好学习习惯的培养。重视培养学生分析问题、解决问题的能力。在学习过程中培养学生认真负责的学习态度和细心计算和验算的好习惯。作业严格把关,要求书写认真,提高正确率,不让一本本子蒙混过关。
6、多和学生交流、沟通,了解学生的内心世界及时帮助学生解决在学习生活的过程中遇到的各种问题,解开他们心中的结,让他们在快乐、轻松的气氛中感受学习的乐趣。赏识每个层次的学生的每一个微小的进步,并及时鼓励他们,多表扬和肯定、批评、增加他们学习的自信心,让他们感受学习带来的快乐。
二次函数综合题分类及答案 篇17
一、学情分析:
学生对知识的掌握仍存在一些不利因素,有少部分学生,由于知识脱节,单元知识能过关,但综合能力较差,对于概念理论知识理解过于肤浅,对知识运用也欠灵活,有一部分学生学习态度比较浮躁,计算能力较差,还需进一步提高,应用题分析能力还可以,个别学生仍需继续辅导。从学生习惯方面看,有一部分学生没有养成良好的学习习惯。做题马虎,丢三落四,抄错数,不用直尺等许多学习习惯有待改善;还有个别学生由于缺乏自信心。
二、教材分析:
本册教材包括:小数的意义和性质,小数的加法和减法,四则运算,运算定律与简便计算,三角形,位置与方向,折线统计图,数学广角和数学综合运用活动等。其中小数的意义与性质、小数的加法和减法,运算定律与简便计算以及三角形是本册教材的重点教学内容。教材编写特点
1、改进四则运算的编排,降低学习的难度,促进学生的思维水平的提高。
2、认识小数的教学安排,注重学生对小数意义的理解,发展学生的数感。
3、提供丰富的空间与图形的教学内容,注重实践与探索,促进学生空间观念的发展。
4、加强统计知识的教学,使学生的统计知识和统计观念得到进一步提升。
5、有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。
6、情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。
二次函数综合题分类及答案 篇18
一、指导思想:
在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析
使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务
本学期上半期授课内容为《选修1-2》和《选修4-4》,中段考后进入第一轮复习。
四、学生基本情况及教学目标
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。
二次函数综合题分类及答案 篇19
本学期我继续担任高三理科82班和88班的数学教学工作,为了20xx年学生能充分迎接高考且能考出好成绩,我制定了高三数学复习教学计划。
一、指导思想
研究教材,了解新的信息,更新观念,倡导理性思维,探求新的教学模式,注重团结协作,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
二、教学设想
㈠总的原则
1、认真研读数学考试大纲及全国卷考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意高考的信息。根据样卷把握第一、二轮复习的整体难度。
2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。
3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
㈡体现数学学科特点,注重知识能力的提高,提升综合解题能力
1、加强解题教学,使学生在解题探究中提高能力。
2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。
不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
多从贴近教材、贴近学生、贴近实际角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。
㈢合理安排复习中讲、练、评、辅的时间
1、精心设计教学,做到精讲精练,不加重学生的负担,避免题海战
2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果
3、注重实效,努力提高复习教学的效率和效益
㈣改变传统复习模式,体现小组交流合作
1、淡化各自为战,加强备课小组交流合作,资源共享。
2、坚持学生主题,教师主导。
3、注重学法指导及心理辅导
(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。
(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。
(3)加强边缘生的个别辅导。A类边缘生采用各个击破,B类边缘生抓基础,促能力,A类边缘生注意个别指导;B类边缘生手把手的教,主要课堂重点关注,课后重点辅导。
三、教学重点
1、数学思想方法
2、教材的重点、高考的热点
3、依据新大纲、夯实基础,突出内容,课程内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。
4、注意以单元块的纵向复习为主到综合性横向发展为主。
从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。
注意知识的交叉点和结合点。
四、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持先备课后上课,加强学习,多听课,探索第一轮复习的教学模式。
3、脚踏实地抓落实
(1)当日内容,当日消化,加强每天必要的练习检查督促。
(2)坚持每周一次小题训练,每周一次综合训练。
(3)周练与综合训练,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。对每一次考试试题研究,努力提高考试的效率。
① 注意研究高考考试说明,近三年高考试题,特别是全国卷的高考试题。
②在综合练习中,不缩小考试难度,既注意重点知识的考查,注重对数学思想和方法的考查。
③在综合练习中注意实践能力的考查,要求学生能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明.
④在综合练习中注意创新意识的考查:要求学生能对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
⑤在综合练习中注意个性品质要求的考查:要求学生能具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
4、加强应试心理的指导
为学生减压,开启他们心灵之窗,使他们保持最佳状态。
5、高考数学试卷上的题与我们平日练习的题目不一样,怎么办?复习时应注意什么?
(1)力求作到三个避免
避免需要死记硬背的内容; 避免呆板的试题;避免繁琐的计算。
(2)用学过的知识解决没有见过的问题.利用已有的知识内容、思想方法和基本能力,自己去研究试题所提供的新素材,分析试题所创设的新情况,找出已知和未知间的联系,重新组织若干已有的规则,形成新的高级规则,尝试解决试题所确立的新问题。
6、对重点知识与重点方法要真正理解,并且理解准、透.如概念复习要作到:灵活用好概念的内涵和外延,分清容易混淆的概念间的细微差别,提防误用或错用;全面准确把握好所用概念的前提条件;熟练掌握表示有关概念的字符、记号。
7、加强学法指导
在教学中要让学生明白:
第一轮复习,通常称为方法篇。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用配方法、待定系数法、换元法、数形结合、分类讨论等方法解决一类问题、一系列问题。同学们应做到:
①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。
②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。
③从现在开始,解题一定要非常规范,俗语说:不怕难题不得分,就怕每题都扣分,所以大家务必将解题过程写得层次分明,结构完整。
④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
第二轮复习,大约一个月的时间,老师主要讲述选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:
①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对减缩思维的要求。
②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。
③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
最后,就是冲刺阶段,也称为备考篇。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考高三下学期数学教学工作计划 研究教材,了解新的信息,更新观念,倡导理性思维,探求新的教学模式,注重团结协作,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。
②抓思维易错点,注重典型题型。
③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好再工作。
④不做难题、偏题、怪题,保持情绪稳定,充满信心。
二次函数综合题分类及答案 篇20
一、备考具体措施(成功之处):
1、充分利用理科数学备课组的人员和资源优势,进行集体备课,提高了复习备考质量和效率
高三文科组只有3位老师,负责6个班,准确把握复习方向、收集信息、准备讲义、练习和试题,及时改卷及分析等任务重,就要充分利用理科数学备课组的人员和资源优势,进行集体备课,提高备课质量,而文科数学备课组将更多精力集中在文理差别内容和文科学生特点的研究上。而且命制每次月考、模考试题也是文理备课组通力合作,精心打造文理两份姊妹题。
文理备课组统一做到资源共享,加强备课的交流,注重相互协作,强化集体备课,做好每单元的教学进度、内容、深度、广度统一;集体备课,教案基本统一,同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透思想方法等,要有对重点难点的分析和解决方法。同时课后做好教学过程的反思总结。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向
《考试说明》反映了命题的方向,认真研读考纲和说明,这样不但可以从宏观上掌握考试内容,做到复习不超纲;而且可以从微观上细心推敲对众多考点的不同要求,分清哪些内容只要一般理解,哪些内容应重点掌握,哪些知识又要求灵活运用和综合运用。复习中,要结合课本,对照《考试说明》把知识点从整体上再理一遍,既有横向串联,又有纵向并联。在复习中力争不要做无用功,有些内容就得敢于大胆的取舍,因为题永远是讲不完也是做不完的。
从近三年的xx高考来分析,我们预测:20xx年的总体要求保持平稳,20xx年xx高考文科数学试题难度应与20xx年高考试题难度基本一致或略难一点,试题的结构稳定的可能性也比较大。
从20xx年xx高考试题题看,我们备课组的备考总方向和难度都预测和控制得比较理想,下面对照分析我校20xx年校模和20xx年xx高考文科数学解答题情况:
题号
20xx校模
20xxxx高考
第16题
(三函数数)考察解三角形及三角函数的求值
(三函数数)考察三角函数的求值
第17题
(概率统计)考察频率、方差、古典概型及茎叶图
(概率统计)考察频率、古典概型
第18题
(立体几何)考察线面垂直、等积法求体积
(立体几何)考察线面平行、垂直、等积法求体积
第19题
(数列应用题)考察等差、等比数列求和
(数列)考察和式求通项、等差数列、数列求和
第20题
(解析几何)考察待定系数法法求曲线方程、定值问题及函数方程思想
(解析几何)考察考察待定系数法法求曲线方程、最值问题及函数方程思想
第21题
(函数导数)考察函数的单调性、存在性问题、证明不等式、分类讨论思想
(函数导数)考察察函数的单调性、函数最值、分类讨论思想
3、制定切实可行的计划,并且基本上按照计划安排进行复习,达到比较好的复习效果、
俗话:凡事不预而不立。切实可行的意思是计划要细致、具体、严格,一定要遵循计划的安排走,大家知道高三的复习,其实不止我们数学这一科,其他的学科也在内,都是时间紧任务重,要在有限的时间完成可以说是无限的复习内容,不精心作以安排,在复习中势必出现忙乱的现象,也会容易出现顾此失彼的后果。
在开学伊始,全组教师共同商讨就制定出一份时间上、具体到每章每节要用多少课时的不至于流于形式的严格计划,在计划中不但要考虑教学内容的多少,还要考虑在高考中占有的比重,更要顾及哪些内容是我们值得付出时间和精力的,等等一系列因素,使得大家在时间上有了紧迫感,使得我们的教学内容更加有效率,使得我们更能发挥积极性去充分地调动学生。
从第二学期的三次模拟(韶一模、广一模、韶二模)考试结果看,取得了取较好的复习效果,当然最终还是要经过高考结果的'检验。
附:高三数学复习分四个阶段的时间表:
第一阶段:高二期中后到3月10日前完成第一轮复习:系统复习(原计划上学期末结束)
第二阶段:3月10日到5月15日完成二轮复习:专题复习。
第三阶段:5月15日到5月底完成三轮复习:查漏补缺与模拟题训练;
第四阶段:6月1号到6号,学生自己复习与调整阶段。
4、注重数学学科的思想渗透,强化能力的培养、给学生科学合理适于接受的数学学习建议。
在复习中,加强基础知识的巩固和提高,加强各知识板块间的联系和综合,加强通性通法的总结和运用,重视教材,狠抓基础是根本;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。记得在开学初的教研活动中,我们数学的所有老师展开了对各年高考试题的研讨,大家的一致意见就是狠抓基础,立足中档题。在复习过程中我们经常提醒学生多回顾课本、做好学习笔记和纠错本,浓缩所学知识,熟练掌握解题方法,加快解题速度,缩短遗忘周期,达到复习巩固提高的效果,以提高知识与能力的综合性、应用性、创新性为重点。
在复习内容的安排上我们实行代数与几何、较易板块与较难板块交替进行复习,引导学生立足课本,浏览以前的课堂笔记,激活所有数学知识点,这样做既巩固了基础,又给尖子生突破综合问题留出了时间,树立了备战高考的信心、
在集体教研选择教学题目时尤其注重:(1)强调知识的综合性及不同章节的内在联系;(2)不断渗透重要的数学思想与方法。如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想方法;转化与划归的思想方法;运动与变换的思想方法等不断在复习过程中渗透;(3)强化数学思维训练,体现多一点想,少一点算或不急于算。也就是我们曾经说的:磨刀不费砍材功、(4)反思解答问题时的开窍点,优化解题时思维线路,熟练解答问题的通性通法,强化解答综合性数学高考试题的一般思维模式,就能不断提高综合分析问题和解决问题的能力、
5、精选题目,编写好补充讲义、周练、连堂训练(限时训练)、加强检查落实及做好各次月考模考的考试分析。
三位老师既合作、又分工明确,我负责参考在理科数学补充讲义的基础,修改和编写文科数学补充讲义及命制各次周考、月考、模考试题,刘昕负责出好每周的连堂训练和限时训练,杜秋出好每周的周练及做好练习及考试题检对及送印工作。连堂训练(限时训练)让学生独立完成,提高运算能力,在第二节课讲评,周练下周一收,一般安排在周二讲评。周六考、月考或模考周六,加强横向与纵向对比;及时做好统计分析。
以重点知识再复习为主,高三这一年的复习备考中我们一直采取段段清,紧紧跟的原则,所谓段段清就是复习完一个章节即时考查,力求不留知识死角,使得基础复习更完备,知识脉络更清晰,所谓紧紧跟就是复习完这一章再连同前面复习的所有的内容一起再考一次,做好滚动练习与周连结合,及时的巩固缩短了遗忘周期、
在二轮复习过程中,我们基本采用了以学生为主体的练讲结合,把所有的题目都让学生独立的完成,然后学生讲评、老师点评、点拨。达到精讲精练的目的。也使学生不在题海中泛滥,而是在规律和方法中寻求触类旁通,举一反三,游刃有余的学习境界、
6、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生心理辅导。
尖子生的培养文理合为一个班(文10人,理30人),按计划每周上课,充分调动学生积极性和主动性,营造学习和研讨学风。临界生成绩是否能提高直接影响高考的成败,临界生的培养不是一朝一夕的事儿,尤其是文科,很多学生都是因为数学不好才选择了文科,甚至很多尖子生在数学上都存在缺腿现象,这就造成班级没有学习数学的氛围,没有带头人,下大力气培养尖子生,因为只要有一人能学会就会一帮两,两帮三从而带动一批人来学数学。我们的具体做法是:课堂上重点抓基础讲教材,尤其是书上例题书后习题,高考很多知识的考察都是源于课本而高于课本,只有打好基础才能做好提高;课下每天坚持找目标生谈心,多鼓励,做好学生的心理辅导,对于作业必须面批,这方面得到了班主任的大力支持,这不仅提高了学生学习数学的积极性,也培养了学生独立思考和解决问题的能力,同时提高他们的数学成绩。年级将艺体生组成一个班,从他们回来开始,就安排三位老师(谢谢理科备课组的大力支援!)坚持上课到6月5日,取得较好的效果。
二、备考不足之处
1、第一轮复习没有完全按计划结束,拖得时间略长了些,导致二、三轮复习时间略紧,稍微被动了些。
2、由于我本人自分文理科后,没有担任文科数学教学的经验,在复习的难度把握上还是略拔高了些。
3、数列内容的复习,受xx高考前几年的影响,在难度上把握得太难了,虽然近两年的难度减小的呼声,但复习仍不敢降得太多。不过这点还值得商讨。
三、几点备考建议:
1、制定切实可行的计划,并且上按照计划安排进行复习,保证第一轮复习既扎实进行,又完全按计划结束。
2、认真研究了《考试说明》及近三年xx高考试题,较好地把握好高三数学复习备考的总方向,尤其是把握好文科数学特点,控制复习的难度和深度,这是高考备考指导方针。
3、认真加强周练、连堂训练(限时训练)的加强检查落实及做好各次月考模的考试分析,
这是高考成功的保证。
4、落实学校“培优推中提弱”六字方针,加强对尖子生和临界生的培养,做好学生方法指导和心理辅导,这是高考的突破点和增长点。
二次函数综合题分类及答案 篇21
09年的这一个学期是忙碌而充满激情的一个学期半年来的风风雨雨让我获益多多。表现的不仅是在教学上,更多的时候是自己的提高上!
一、科学备考认真命题
本学期我们在上好复习的同时,非常重视每次考试的命题工作为此,我们每一位老师都付出了大量的.心血从选题到打印出试题都很认真,从知识点的考察到学习内容的配备
我们都进行了认真的筛选和反复修改保证每次的命题都达到训练的要求!
二、重视课堂教学注重师生互动
我们每位数学教师都是课堂教学的实践者为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想把数学教学看成是师生之间学生之间交往互动共同发展的过程在教研组长的带领下紧扣新课程标准和我校"自主--创新"的教学模式在有限的时间吃透教材分工撰写教案以组讨论定稿,学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中使学生的智慧、能力、情感、信念水乳交融心度受到震撼,心理得到满足,学生成了学习的主人学习成了他们的需求学中有发现学中有乐趣学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径,常思考常研究常总结,以科研促课改以创新求发展,进一步转变教育观念坚持"以人为本促进学生全面发展打好基础,培养学生创新能力",
以"自主--创新"课堂教学模式的研究与运用为重点努力实现教学高质量课堂高效率。
三、不断反思寻求备考的遗漏
我们把评价作为全面考察学生的学习状况激励学生的学习热情促进学生全面发展的手段,也作为教师反思和改进教学的有力手段除了认真讲解必考的知识点外我们还在教学之余不断反思,认真总结我们在教学中出现的问题尽量想出补救的方法和步骤为此我们分工合作将课本来了一次大扫荡把课本中的一些重要知识点进行再现通过试题的形式展现在每一位学生面前!尽量让学生以最短的时间获得最大的收益!将本着"勤学、善思、实干"的准则一如既往再接再厉把工作搞得更好。
二次函数综合题分类及答案 篇22
又是一年金秋十月,硕果累累满枝头。09年首届新课程高考我校再创辉煌,我们原高三数学备课组的全体同志也备感欣慰,付出终有回报,在09年的高考中无论是奥班还是a班;无论是尖子生还是中等生数学成绩在省协作校均位居首位,为我校09年高考做出了应有的贡献。
回首过去的一年,在整个高三复习备考中,因为有庞校长亲自指挥,把关定向定策,吕校长、年部赵主任适时检查、督促、和鼓励,我们又吸取了往年高三数学组高考复习的成功经验,使得高三整个复习过程思路清晰,方向明确,计划切实可行,并不断地加以总结和完善,收到了很好的效果。
一、瞄准考纲,考试说明,整体规划,思路清晰,科学备考
通过集体备课,发挥集体的智慧和力量,特别是二、三轮复习期间全国《考试大纲》,《考试说明》下发之后,全组同志认真学习与研讨2009年全国《考试大纲》,《考试说明》,吃透精神实质,抓住考试内容和能力要求,比较新、旧《考试大纲》的差异,仔细分析《考试大纲》与《考试说明》的不同点 、变动和强调之处。注意哪些内容降低了要求,哪些内容又将成为新的高考热点。明确各章节知识的考点分布及要求层次,每位教师明确重点,对高考“考什么”,“怎样考”,及新课改下教材内容的重大变化都了如指掌.把握高考动向,使二、三轮复习落实到实处。
二、提高效率 ,重视三轮复习
高三第一轮复习以知识、技能、方法的逐点扫描和梳理为主。注重教材,注重基础,以章节为训练单元,通过一轮复习,使学生对于课本上的每一定义、任一定理、所有公式都要熟透于心,理解它的本质、变化与应用20xx高一语文教学工作总结20xx高一语文教学工作总结。对于课本的'典型问题,既要掌握解答方法,又要思考它的变形、拓展,还应当注意它的应用。通过一轮复习,学生对数学的基本知识、基本概念和基本规律基本掌握,有清晰的认识。而二轮复习是以专题形式为突破口,以高考考点复习为面,以数学能力提升为目的,其首要任务是把整个高中基础知识有机地结合在一起,构建出高中数学知识的“树形图”,对考纲、教材重点内容,再聚合、再加工、再提升,选题坚持源于教材,高于教材。领悟体会好拔高题在书外做,题理、题眼在书中找的原则。一个专题,一个版块不断加工、延伸、拓展,做到夯基提能。由知识点向知识块过渡,向知识体系过渡,深挖井,重打桩,深入浅出。
三轮复习是备考的冲刺阶段,是学生知识和能力巩固、深化、提高的阶段。该轮复习的任务是瞄准高考,着重培养学生的综合能力和应试能力。主要是按高考命题的内容、形式、要求、难度,精选各地模拟试题,进行具有针对性、适应性的模拟训练,提高应试水平。高考前主要是学生自我完善、查缺补漏、调整状态,确保以最佳的心理状态进入高考。
三、统筹安排,超前谋划,精细于课前,收获于课后。
(一) 精选习题,科学训练
指导思想:提纲引路、典例开道、夯实基础、围绕训练、阶段过关、回放检验、适时综合、创新升华。
1提纲编写:按专题子系统设计提纲,提纲中有知识框架结构,重要知识点回顾,重要公式、定理、性质,及方法的提炼,并配备典型例题、类比练习。
2专题训练,突出重点;对所定的资料进行筛选,该删掉的坚决拿下,该补充的自己选题,反复练,真正起到了专题复习的实效性。坚决不跟着题纸跑,而是围绕考纲转,围绕教材练。
(二) 组题、选题原则:
1、备课组遵循:(1)统一思想,(2)集中集体智慧,(3)资源共享,(4) 教师下题海,学生出苦海(5)责任到人。
2、按照不同的班型(奥甲、奥乙、a班),备课、授课、组题实行不同方案。a班中贯彻重心前移、前120分拿高分,奥班学生抓两头题得分,小题拿满分,全卷得高分,注重实效性。
3、连堂90分钟周测题:精选各地仿真模拟试题,奥班删1题、a班删1—2题(删的内容可不一样)。立足高考,高质量完成。
4、后期课前10分钟训(20xx年副校长工作总结)练:一个选择题、三个填空题,以回插回放为主,穿插小的新题、活题、新课改题。要求精准。
5、课堂主训练题:分类重组新题、活题、传统题、经典题、回插回放一、二轮复习中的好题,立足基础,强化知识的综合性和交汇性,不迷信、不依赖,综合考点,把握重点,突破难点,关注热点,查找漏点。适应高度、综合度,涨分提能。
6、晚辅导加长急行军训练,三轮复习集中加长训练客观题,精选选择题18—22个,填空6—8个题,共计24—30道小题,其中有奥必做,a选做题, 65分钟完成,侧重练习准确性和速度,剩余20分钟,先对答案,学生研讨修改,教师点拨。最后学生再完善。教师要在各种类型题的答法上给予特别强调。
7、回插回放训练:典型题、经典题、教材改编题、易错易混题重点呈现。这部分训练由青年教师负责,便于准确查找,切中要害,使回放不流于形式。同时体现新增内容,既突出主干知识,又尽力展示课标中的新内容。
二次函数综合题分类及答案 篇23
本学年本人担任高三年组数学教师,教课班级为4班、7班和27班三个班级,随着高考的结束,本学期教学任务圆满结束,我所教三个班都是普通班或复习班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着全校考生高考的成绩,数学教师的责任是重大的。下面就以下四点对本学期的教学工作进行总结:
一、任课班情
本学期所教授的三个班级具体班情各不相同:4班是普通文班,班主任是黄立学老师;7班是普通理班,班主任是刘永贺老师;27班是补习文班,班主任是陈秀娟老师。由于本人工作时间短的原因,在本学年之前,没有过文科班班级以及补习班班级授课经验,所以本学年尤其是刚开始的时候,面临着不小的压力与挑战,好在授课班级的三位班主任老师对工作积极负责,在工作上给予了我非常大的帮助,使我能短期内迅速适应班级特点,开展教学工作。
二、任课学情
我所教的三个班级,27班是文科补习班,相对学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。但是教授补习班就应该为学生的升学负责,他们之所以选择了复读,就是为了考取一个更好的大学,为此我们责无旁贷。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气;4班是一个普通文班,本班数学底子很是不好,先后换过三任数学教师,但是本班有几名学生智力、反映都很不错,为此如何提升他们的成绩,以此调动班级成绩,是本学年的一个问题。另外,本班由于差生面太大了,后进生基础太差,考试成绩都很差,有些同学是经常不及格,调动提高他们的学习积极性、提升他们的数学成绩,是本学期工作的重难点;7班是普通理班,接手之前成绩也一直不太理想,分析原因,是因为本班学生成绩分化严重,形成了明显的几个梯队:学习靠前的梯队整体成绩都不错,但没有十分拔尖的学生。后续梯队干劲明显不足,被前面的同学落下了很大一截。后进生对学习数学的兴趣不高,因此如何提高后进生的学习兴趣,拉近梯队间差距,成为本班的工作要点。
三、任课教情
对于27班,由于班级学风相对不错,本班的工作主要是巩固基础知识,并提高做题的量与难度,在与普通班一样完成正常的教学任务之外,我还组织他们做了对应的数学报纸,并且进行了讲解。在平时的时候,注重培养学生高考的`读题解题能力,期望他们能在20xx年的高考中取得更好的成绩;对于4班,我的具体措施是找同学适当的谈心,让学优生之间互相竞争,以此来带动整个班级的数学学习气氛,对于后进生尤其是艺体特长生,我尽可能的发现他们的闪光点,及时给予表扬,课下经常与他们谈心,帮助他们明确学习目的,从学习上主动辅导他们,使他们不断进步,变被动学习为主动学习,让他们更有自信心;对于7班,学优生的问题不大,在他们学习松懈的时候,给予适当的提醒就可以了,关键难点在于如何提高后进生的学习积极性,拉近梯队间的差距。为此,我采取的措施是适当放慢本班的教学进度,尽可能更翔实明确的教学生如何读题、如何解体,注重学生做题及运算的能力培养,使大部分学生学习不掉队,后进学生不放弃。
四、教学具体措施
1、注重培养学生做选择填空题的能力
虽然高考中选择填空题占了80分,但它难度不是很大,高考考它们的方向是基础与全面,为顾及到各层次的考生(包括艺术类,体育类考生)高考一定要考基础,考试的知识点覆盖率应该尽量大,这些设计目标由选择填空题来完成。以它的目的来看,选择填空题的难度不应该大,一张卷有2-3道难度大的题就足够了,因此做好选择填空,是大部分学生得高分的关键因素。所以复习时,我注重培养学生自己的数学读题解题能力。选择填空题往往有一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等,我除了在平时的训练,还作了选择填空题的专题训练以提高学生的解题技巧。从今年的高考实际看,选择填空题的难度不大,得满分的不少。
2、重视解答题。
我们在复习中提出重视解答题,同时不能丢了选择填空题,一定要求学生努力做解答题。因为从历年的高考看,高分学生成绩的好坏最终取决于解答题。所以在实际教学中我侧重解答题的教学,用较多的时间分析讲解解答题,给学生充分的时间去做解答题,如复习立体几何或解析几何时减少习题数量,每天就要求学生就作3-4道解答题,对学生区别要求,差一些的学生可以再少做一些,鼓励学生一定要努力做解答题。
3、握好高考的方向。
高考试卷的型式:22道试题,12道选择题,4道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。其中,数列与三角的题目没有办法预测,我们都进行了大量的训练,结果也是很不错,今年的文理试卷分别各考了一道大题,学生没有因为没复习到而影响高考的发挥。唯一遗憾的是,以往每年的不等式题,都是以解不等式的形式出题,今年一反常规,考了不等式的证明,我们在最后的三轮复习中,相对练的较少,部分学生答题出现困难。这更提醒我们在今后的教学中要更加深入的研究高考方向。
-
青果网小编为您推荐二次函数综合题分类及答案专题,欢迎访问:二次函数综合题分类及答案
本文来源:http://www.qg85.com/zonghe/188487.html
